

Background

This study was funded by NOAA RESTORE Science Program (Grant # NOAA-NOS-NCCOS-2017-2004875). The funders had no role in the design, execution, or analyses of this project. We are also grateful to all technicians and students at our institutions who assisted with sample collection and preparation. All samples obtained for this study were approved by the Louisiana Department of Wildlife and Fisheries and the United States Fish and Wildlife Service. Sampling protocols follow the statutes of the Institutional Animal Care and Use Committee of the LSU AgCenter and Rutgers University.

* Preliminary results, subject to revision and not for citation

Created coastal marshes have equivalent diversity to natural coastal marshes: A case study from Louisiana

Friedrich W. Keppeler^{1,2}, James R. Junker³, Margaret J. Shaw¹, Annette S. Engel⁴, Ashley McDonald⁵, Brian J. Roberts⁶, Charles W. Martin⁵, Erick M. Swenson⁷, Jill A. Olin³, Linda M. Bui⁸, Michael J. Polito⁷, Nancy N. Rabalais⁷, Olaf P. Jensen¹, Paola C. López-Duarte⁹, Ryann Rossi⁶, Scott Alford⁵

Study sit

Figure 3. Among-site rarefied diversities for individual *plots/samples (α; x-axis) among-samples (β; insets),* and total site (*y*; *y*-axis) for all taxonomic groups.

 α -diversity (S_N

taxonomic groups. ----->

cross-taxonomic	analysis of ma	arsh biodiversit	У У
	Samp	oling	
Таха	Taxonomic resolution	Sampling method	Replicates
Fish &	Species	Minnow trap	27
Macroinvertebrates	Species	Trawling	8
Plants	Species	Quadrats	15
Spiders	Morpho type	Sweeps	1
Microbes	Order	Core (surface)	4
	Order	Core (8-10 cm depth)	4
Macroinfauna	Species/Genus	Core	10

Reference marshes

PS7

Figure 4. Abundance (mean ± 1SD) among created (LHA & LHB; green symbols) and reference marshes (LHC, WPH01, WPH02, & PS07) for all

$\left[\right]$	Que
	chang
	•• LHA •• sSBR
500 450 400	Surface Microbes
350 300 500	1 2 Below-Surface Microbes
450 400 350 300	
10.0 7.5	1 2 Plants
5.0 2.5 S	
25 20 20 15 10	Macroinfauna
Spec	1 2 4 8 Spiders
16 12 8	On-marsh nekton
4	1 2 4 8 16 Off-marsh
15 10	nekton
5	1 2 4
	densi
	<u>Tak</u>
•	Aggre
	densit
	taxon
•	But m
	effects
	and re
<i>Fig</i> bet	<i>ure 6.</i> Abs ween mars
con den	tribution o sity, and sp
dist	ribution (S
pai	wise comp
•	Create
re	eferenc
·	Create
re a	Create eference nd reste

estion: How does species richness ge across scales amongst groups?

Takeaways Crossed streams: Scale-dependence in all taxonomic groups

Figure 5. Sample-based rarefactions (left column) maintaining spatial configuration and (middle column) breaking spatial relationships. (right column) Individual-based rarefactions based on sampling individuals randomly.

stion: Do the effects of aggregation, ity, and SAD differ among marshes?

Conclusions

ed marshes were not notably different than ce marshes

ed marshes harbor similar levels of biodiversity as e marshes: Important tools for the maintenance toration of coastal biodiversity

al marshes are not equivalent. Different building plans may lead to different biodiversity patterns