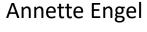
Using Community and Food-Web Approaches to Inform Marsh Restoration in Coastal Louisiana

M. Polito¹, A. Engel², L. Hooper-Bui¹, O. Jensen³, K. Lamb¹, P. Lopez-Duarte⁴, C. Martin⁵, J. Olin⁶, B. Roberts⁷, N. Rabalais^{1,7}, E. Swenson¹

¹Louisiana State University, ²University of Tennessee-Knoxville, ³University of Wisconsin-Madison, ⁴University of North Carolina-Charlotte, ⁵University of Florida/IFAS Nature Coast Biological Station, ⁶Michigan Technological University, ⁷Louisiana Universities Marine Consortium

OneNOAA Webinar: Wed, Oct 28, 2020 11:00 PM - 12:00 PM CDT

http://restorefoodweb.lumcon.edu/



Project PI Team

Mike Polito

Linda Hooper-Bui

Olaf Jensen

Paola Lopez-Duarte

Charlie Martin

Jill Olin

Brian Roberts

Nancy Rabalais

Erick Swenson

More information: http://restorefoodweb.lumcon.edu/about/team-members/

End-Users & Technical Monitors

End-User Advisory Panel

- Stuart Brown, LA Coastal Protection and Restoration Authority
- Jim Pahl, LA Coastal Protection and Restoration Authority
- Sharon Osowski, US EPA Region 6
- Kevin Roy, U.S. Fish and Wildlife Service
- Robert Spears, Plaquemines Parish Coastal Zone Management Office
- Pat Williams, NOAA Restoration Center

Program Officer & Technical Monitors

- Frank Parker III, NOAA RESTORE Science Program
- Melissa Carle, NOAA Restoration Center
- Shannon Martin, NOAA Cooperative Institute for Marine and Atmospheric Studies

Project Introduction

Marsh Food Web Research Informs Coastal Land Restoration Efforts in Louisiana (Video)

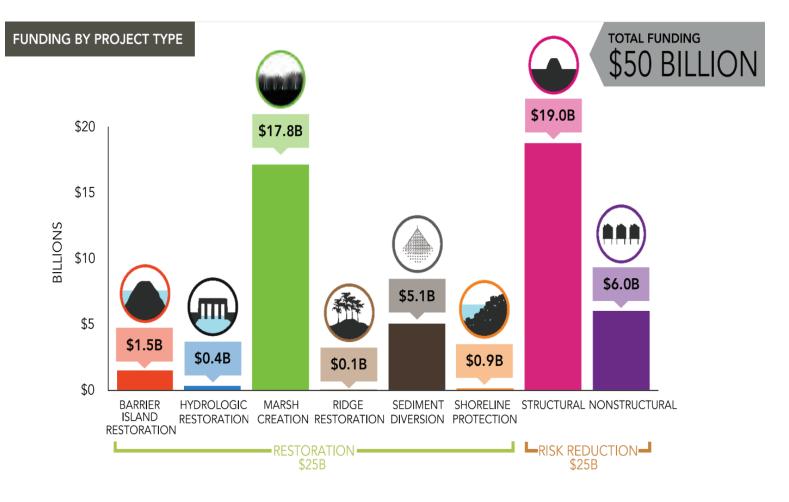
Published on: 09/21/2020

Research Area(s): Coastal Change / Natural and Nature-based Features, Restoration, Sea Level Rise, Vulnerability and Risk Assessment Region(s) of Study: U.S. States and Territories / Louisiana Primary Contact(s): frank.parker@noaa.gov

More information: <u>https://coastalscience.noaa.gov/news/marsh-food-web-research-informs-coastal-land-restoration-efforts-in-louisiana-video/</u>

Background

Louisiana is losing its boot



From the early 1930s to 2000, Louisiana lost an area close to the size of Delaware.

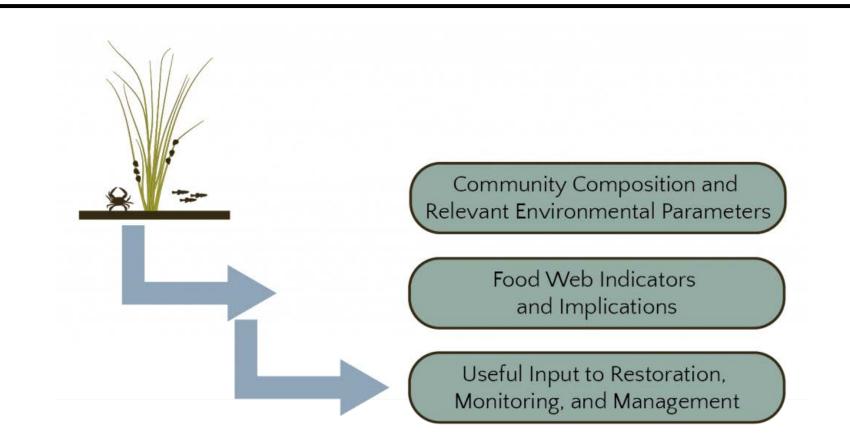
Marsh creation & river diversions are used to combat land loss

2017 Louisiana Coastal Master Plan Project Budget

Are created marshes ecologically equivalent existing marshes?

Most monitoring efforts evaluate:

- Dominant vegetation
- Elevation / Hydroperiod
- Soil and water chemistry

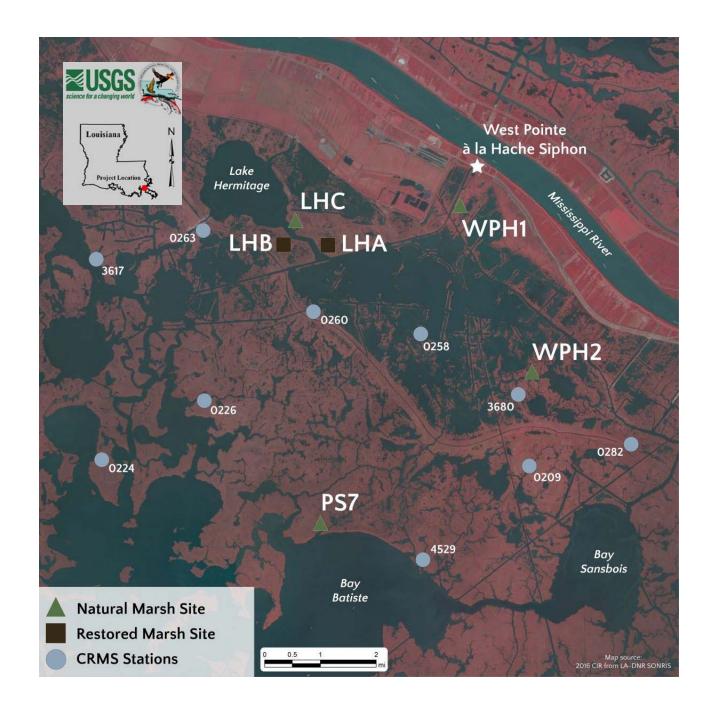

Limitation:

Does not directly examine functional qualities like community dynamics & the flow of energy and nutrients through the food web.

Our goal is guide restoration effort by integrating community and food-webs approaches into restoration monitoring and planning

Objectives

- 1. Examine community composition & food web structure at <u>created vs.</u> <u>natural marshes.</u>
- 2. Examine community composition & food web structure in natural marshes <u>along a salinity gradient</u>.
- 3. Develop an ecosystem model to predict the outcome of habitat restoration efforts on food web structure, function and resilience.


Study Methods

Study Area & Timing

- Lake Hermitage Marsh Creation Project within Barataria Bay, in Plaquemines Parish, Louisiana.
- Spring 2018 (Siphon off) 🗸
- Spring 2019 (Siphon off) ✓
- Spring 2019 (COVID)
- Spring 2021 (Siphon on)

Study Design

2 created & 2 reference marshes

3 reference marshes

Data Collection

- Hydrology & Elevation
- Soils Characteristics
- Vegetation
- Microbes
- Infauna
- Insects
- Nekton
- Food Web (isotopes)

Transect Sampling Sampled 1, 10, 25, 50 m from Edge: - Vegetation - Infauna (only 10, 50 m) - Soil Characteristics - Microbial Sampling (only 1, 10m) - Litter Bags & Epibenthic Invertebrates Sampled 1 m into Adjacent Water (-1 m): - Phytoplankton Biomass - Dissolved Nutrients - Organic Carbon - Microbial Sampling Nekton Sampling

- Minnow Traps at Pond, Creek, Edge - Fyke Net at the Creek Mouth - Fish Trawls along Marsh Channel

Transect 1

Fish Trawl

Surveys

Insect and Spider Sweeps 20 m into Marsh
 Emergence Trapping Site at Start of Sweep

LHC

Fyke Net Creek 2 Creek 1 Creek 3

Edge 1• P

Edge 2 Pond 2 Transect 3

Transect 2

• Pond 3 Edge 3 •

Insect Sampling

Created vs. Reference Marshes

Are created marshes ecologically equivalent to reference marshes?

Compare 4 sites in 2018-19

- LHA: ~4.5 years old
- LHB: ~4.0 years old
- LHC: Reference
- WPH2 Reference

Community & Food Web Comparisons

- Shannon-Wiener index
 - increases as both the richness and evenness of the community increase
- Sørensen–Dice index
 - An estimate of community similarity based on species presence / absence

$$H' = -\sum p_i \ln p_i$$

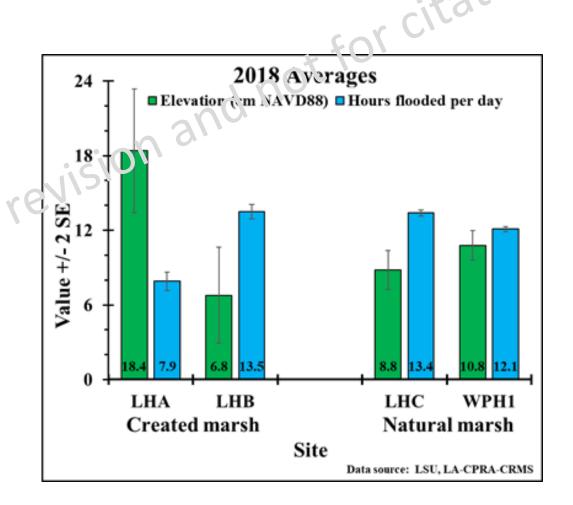
$$S_{SD} = 2a/2a+b+c$$

Results

Created vs. Reference Marshes Infauna for citation

- Hydrology & Elevation
- Soils Characteristics & Decomposition revision
- Vegetation
- Bacteria, Archaea, Fungi

- - Insects
- Nekton
- Food Web Structure


Hydrology & Elevation

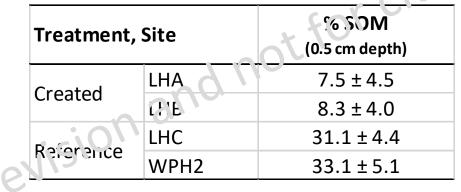
Elevation

- LHA (created) = highest elevation; other sites are all similar.
- Reference marshes have a more uniform surface (lower SE).

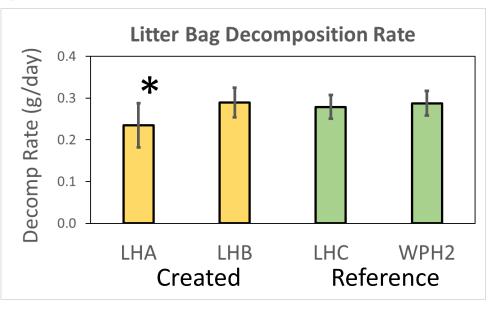
Flooding

- LHA (created) = least flooded; other sites are similar.
- Reference marshes have more uniform flooding (lower SE).

Soils & Decomposition



Soil Organic Matter (SOM) Content


 Created sites (LHA &LHB) have lower soil organic matter content than reference marshes.

Litter Decomposition Rate

 LHA (created) has slower decomposition relative to LHB (created) & reference sites (LHC & (VPH2)

Vegetation

Aboveground Biomass

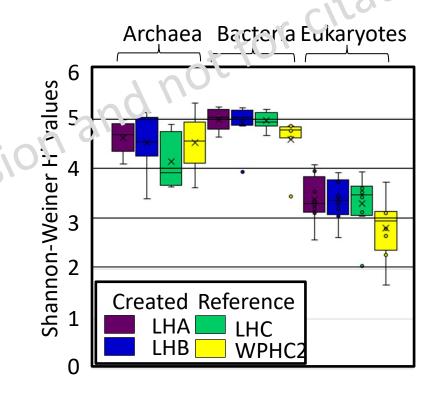
- LHA (created) = lowest biomass
- LHB (created) = reference sites

Community Diversity (H')

- Higher diversity & species richness in created marshes.
- LHA (created) = Highest diversity; species not typical of wetlands

Community Similarity (SD)

 LHB (created) is more similar to the reference marshes (88-90%) than it is to other created marsh LHA (~66%).

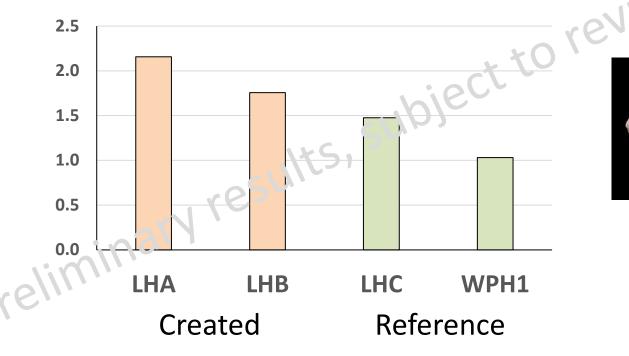

Microbes (DNA & lipid-based approaches)

Community Diversity (ப்) & Similarity (SD)

- Similar diversity between created & reference sites (some exceptions).
- Fiigh community similarity across sites (~70-94%).
- Bacteria & archaea at created sites are slightly more like each other than reference sites

• Operational taxonomic units (genetic units) used for comparisons

More info: <u>http://restorefoodweb.lumcon.edu/research/reports-presentations/#iLightbox[gallery_image_1]/0</u>



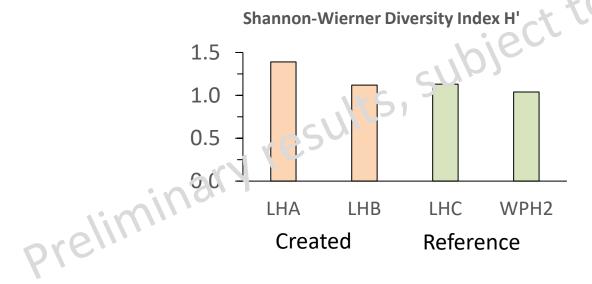
Benthic Infauna

Community Diversity (H')

Higher diversity (H') in created marshes

Community Similarity (SD)

 ~50-60% community similarity between all sites, apart from LHB and LHC (~84.8%)



Terrestrial Insects & Spiders

Species Diversity (H')

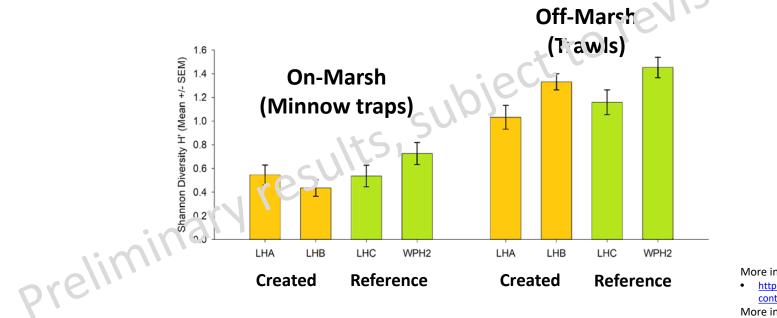
- Highest diversity (H') at LHA (created).
- Higher richness (78 morpho-species) in LHA and LHB (66) at LHB relative to reference sites (LHC: 50; WPH2: 48)

Community Similarity (SO)

 ~52-64% community similarity between all sites

More info: <u>http://restorefoodweb.lumcon.edu/wp-</u> content/uploads/2020/05/Bui-NOAA-Insects-and-Spiders-2019-CERF.pdf

Fish & Nekton


Community Diversity (H')

 Similar diversity across created & reference sites for both "on-marsh" & "off marsh" nekton communities

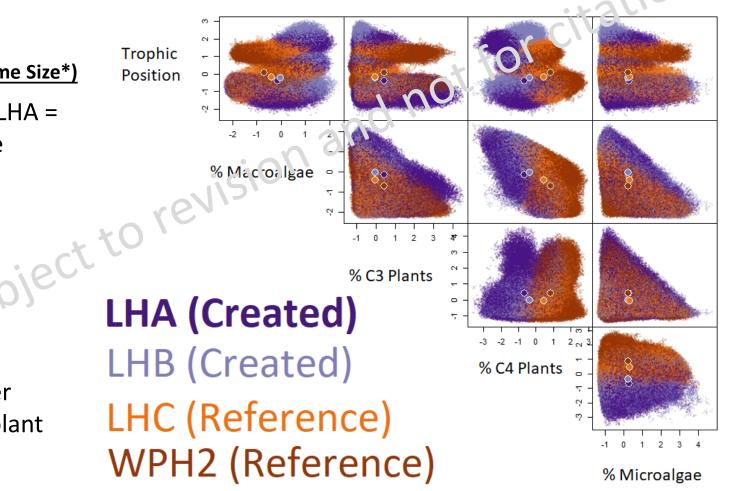
Community Similarity (SD)

High similarity across both created and references sites (~71-90%).

More info: On Marsh

- <u>http://restorefoodweb.lumcon.edu/wp-</u> content/uploads/2020/05/Lopez-Duarte-et-al.-GOMOSES2019.pdf
 More info: Off Marsh
- <u>http://restorefoodweb.lumcon.edu/wp-</u> content/uploads/2020/05/Martin-et-al.-GOMOSES-2019-poster.pdf

Food Web Structure (Stable Isotopes)



Trophic Diversity (Hypervolume Size*)

 Reference sites = smallest; LHA = largest; LHB = intermediate

Trophic Similarity (SD)

- LHA = 18-33% similar to reference sites
- LHB = 33-49% similar to reference sites
- Created marshes have wider trophic niches & lower C4 plant contribution

*Larger hypervolume = broader resource use and/or longer food chain length.

Summary

Characteristic at LHA(created) differ from reference sites while those at LHB(created) are more similar

Commonly Measured Marsh Characteristics

Parameter	AHL	LHB
Elevation	Higher	Similar
Flooding Duration	Lower	Similar
Soil Organic Matter	Lower	Lower
Decomposition Rate	Lower	Similar
prelli		

Higher diversity & lower similarity at LHA(created) while the other LHB(created) is more similar to reference marshes

Community	Diversity	(H')
-----------	-----------	------


Parameter	LHA	LHB
Vegetation	++	+
Microbes	=	TOCT
Infauna	++	sup+
Insects & Spiders	1451	=
Nekton	<u> </u>	=
Food Web Stucture	++	+
alimina		
En		

Community Similarity (SD)

Parameter	LHA	LHB
Vegetation	68%	89%
Microbes	80%	78%
Infauna	57%	70%
Insects & Spiders	64%	56%
Nekton	81%	84%
Food Web Stucture	26%	41%

Conclusions

High similarity likely due to high dispersal / connectivity

Nekton

High similarity likely due to high dispersal / connectivity

Nekton

Low similarity likely due to high spatial heterogeneity

• Infauna / Insects

High similarity likely due to high dispersal / connectivity

Nekton

Low similarity likely due to high spatial heterogeneity

• Infauna / Insects

Differences among sites related to elevation, hydrology, and soil characteristics

• Vegetation / Microbes / Food Web Structure

- Soil organic matter is lower at all created sites
- Higher elevation leads to less flooding at some created sites (e.g. LHA)
- Lower vegetation biomass
 & lower decomposition
 rates at higher elevation
 created sites

- Soil organic matter is lower at all created sites
- Higher elevation leads to less flooding at some created sites (e.g. LHA)
- Lower vegetation biomass
 & lower decomposition
 rates at higher elevation
 created sites

• Lower terrestrial carbon use at created sites (higher aquatic carbon source use)

- Soil organic matter is lower at all created sites
- Higher elevation leads to less flooding at some created sites (e.g. LHA)

Lower vegetation biomass
 & lower decomposition
 rates at higher elevation
 created sites

- Lower terrestrial carbon use at created sites (higher aquatic carbon source use)
- Created sites that are less flooded than reference sites have lower food web similarity (LHA = 18-33%), relative to those with more similar hydrology (LHB = 33-49%)

Take Away Points

1. Community "recovery" will differ among taxa relative to dispersal potential, spatial heterogeneity, and the importance of hydrological conditions.

Take Away Points

- Community "recovery" will differ among taxa relative to dispersal potential, spatial heterogeneity, and the importance of hydrological conditions.
- Post-construction hydroperiod, soil, and vegetation monitoring can provide proxies of community and food web dynamics.

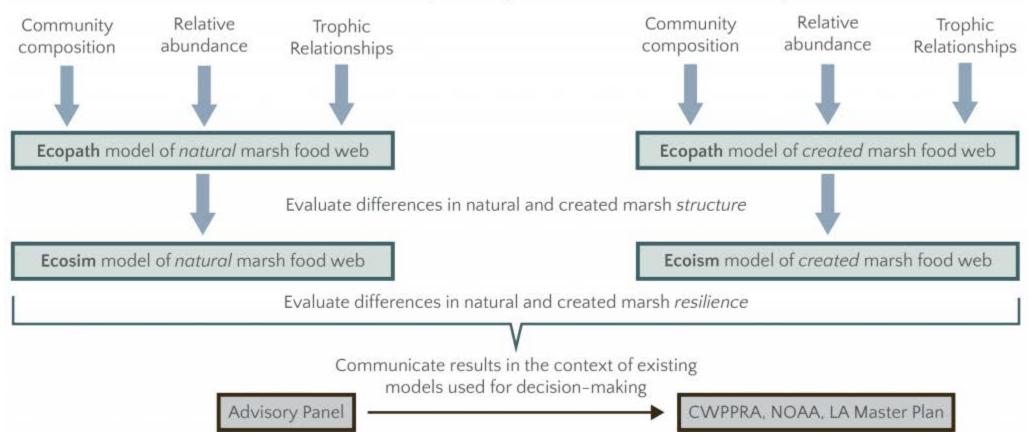
Next Steps

Siphon Opening in 2021

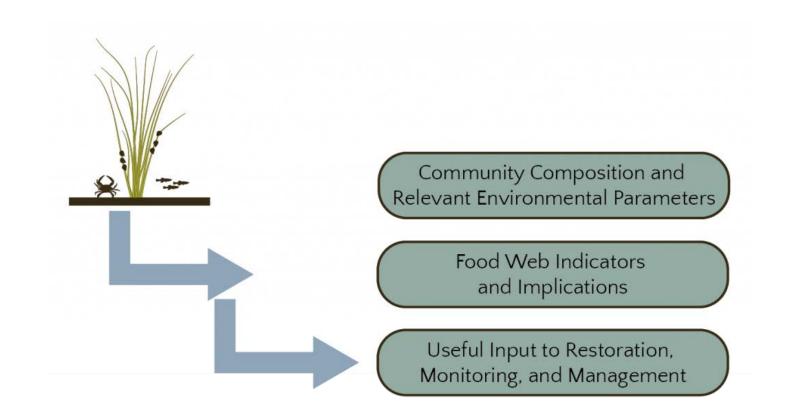
- 1. Examine community composition & food web structure at <u>created vs.</u> <u>natural marshes.</u>
- Examine community composition & food web structure in natural marshes <u>along a salinity gradient</u>.
- 3. Develop an ecosystem model to predict the outcome of habitat restoration efforts on food web structure, function and resilience.

EcoPath / EcoSim Modeling

- 1. Examine community composition & food web structure at <u>created vs.</u> <u>natural marshes.</u>
- 2. Examine community composition & food web structure in natural marshes <u>along a salinity gradient</u>.
- 3. Develop an ecosystem model to predict the outcome of habitat restoration efforts on food web structure, function and resilience.



EcoPath / EcoSim Modeling



Data from field studies and isotopic analysis with and without the siphon influence

Inform restoration effort by integrating community and food-webs approaches into restoration monitoring and planning

To learn more visit: http://restorefoodweb.lumcon.edu/

About Science Plan Study Area

Research Data Mgmt Media **Q**

Linking community and food-web approaches to restoration An ecological assessment of created and natural marshes influenced by river diversions

Thank you!

Project Team:

End-Users:

Restoring Coastal Louisiana since 1990

Funding:

