Impacts of a River Siphon on Estuarine Nekton Communities in West Pointe à la Hache, Louisiana Scott B. Alford¹*, Charles W. Martin¹, Paola Lopez-Duarte², Annette S. Engel³, Linda Hooper-Bui⁴, Olaf P. Jensen⁵, Jill A. Olin⁶, Ashley M. McDonald¹, Michael J. Polito⁷, Nancy N. Rabalais^{7,8}, Brian Roberts⁸, Eric Swenson⁷

¹Institute of Food and Agricultural Sciences Nature Coast Biological Station, University of Florida, Cedar Key, FL; ²Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina; ³Department of Earth and Planetary Sciences, The University of Tennessee - Knoxville, Knoxville, Tennessee; ⁴Department of Environmental Sciences, Louisiana State University, Baton Rouge, Louisiana; ⁵Center for Limnology, University of Wisconsin - Madison, Madison, Wisconsin; ⁶Great Lakes Research Center, Michigan Technological University, Houghton, Michigan; ⁷Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana; ⁸Louisiana Universities Marine Consortium, Chauvin, Louisiana

Background

- Louisiana's coastal land loss rate is among the highest in the world, peaking at ~83.5 km² in the 1970s and currently ~28 km².
- Louisiana's Coastal Master Plan devotes \$5.1 billion to river diversions to mitigate coastal erosion and offset climate change.
- Though provision of sediment from diversions is expected to increase land accretion, increased freshwater inflow will likely restructure ecological communities due to changes in environmental conditions (e.g., salinity).
- Restructuring of coastal nekton communities could impact ecological function (e.g., energy flow) and services (e.g., fisheries) of Louisiana's coastal ecosystems.

Objectives

- .. Examine changes in fish and decapod community structure before/after a river siphon opening at West Pointe à la Hache.
- 2. Examine impacts of river siphon across the estuary's salinity gradient.
- 3. Identify nekton species driving differences in community structure

Methods & Study Site

- Sampled estuarine communities using trawls and minnow traps to characterize community structure on- and off- the marsh (traps and trawls, respectively)
- **Objective 1**: Sampling conducted in 2 years pre-siphon opening (2018, 2019) and 2 years **post-siphon opening** (2021, 2022).
- **Objective 2**: Samples taken at **oligohaline** to saline sites (WPH1, WPH2, PS7, respectively; Fig. 1) in all years.
- Community structure analyzed using 2way PERMANOVA in PRIMER software (V 7) using year and site as predictor variables (**Objectives 1 & 2**).
- **Objective 3**: SIMPER used to quantify species contributions to community similarity among sites and years.

Fig 3. nMDS plots displaying off-marsh (trawl; A) and on-marsh (minnow trap; B) sample similarity among sites through time. Each point represents centroids from averaging sample similarity within each site (WPH 1, WPH 2, PS 7) for each year (2018, 2019, 2021, 2022).

Table 1. SIMPER comparison of abundance (Abund) and percent
 contributions to community similarity (% Cont.) by species making up majority of off-marsh community (trawl samples) in each site (WPH 1, WPH 2, PS 7) within each year sampled (2018, 2019, 2021, 2022).

WPH 1				WPH 2			PS 7				WPH 1			WPH 2			PS 7			
	Species	Abund % Cont.		Species	Abund % Cont.		Species	Abund % Cont.			Species	Abund % Cont.		Species	Abund % Cont.		Species	Abund	% Cont.	
2018	F. aztecus	2.56	21.6	F. aztecus	2.68	25.84	F. aztecus	1.82	45.7	2018	F. grandis	1.01	55.83	F. grandis	1.05	60.04	F. grandis	1.66	51.96	
	M. undulatus	2.23	19	L. xanthurs	1.88	17.14	L. rhomboides	0.97	24.6		P. pugio	0.63	23.53	F. aztecus	0.29	6.92	P. pugio	0.89	14.42	
	L. xanthurus	2.24	18.9	S. parvus	1.49	13.23								L. parva	0.43	6.71	C. sapidus	0.53	10.4	
	A. mitchilli	1.79	13.76	L. rhomboides	1.4	11.78														
				M. undulatus	1.27	9.33														
2019	F aztecus	2.57	23.85	F. aztecus	2.53	32.01	F. aztecus	1.93	43.94	2019	F. grandis	1.1	70.45	F. aztecus	0.73	46.29	F. aztecus	0.67	50.15	
	M. undulatus	2.15	18.15	M. undulatus	1.72	19.54	A. mitchilli	0.94	16.03					F. grandis	0.9	28.03	P. pugio	0.55	23.64	
	A. mitchilli	1.93	17.19	A. mitchilli	1.62	18.68	L. setiferus	0.82	15.55											
	C. arenarius	1.51	13.36																	
2021	M. ohione	3.4	42.8	F. aztecus	2.46	23.77	F. aztecus	2.25	32.17	2021	P. pugio	1.03	61.36	P. pugio	1.14	46.03	P. pugio	0.84	43.78	
	I. furcatus	1.7	20.38	L. xanthurs	2.45	22.75	L. xanthurus	2.08	28.13		M. ohione	0.62	31.81	F. aztecus	0.7	25.48	F. aztecus	0.46	29.31	
	M. undulatus	1.57	19.25	M. undulatus	1.67	15.41	M. undulatus	1.73	23.27											
				A. mitchilli	1.46	10.08														
2022	M. ohione	1.89	43.44	F. aztecus	2.24	33.22	F. aztecus	2.12	32.29	2022	M. ohione	1.44	81.08	F. grandis	0.99	38.5	P. pugio	1.79	46.97	
	A. mitchilli	1.65	32.72	C. sapidus	1.34	19.93	L. setiferus	1.31	22.3					F. aztecus	0.76	26.4	F. grandis	1.6	31.53	
				M. undulatus	1.23	17.04	M. undulatus	1.3	17.35					P. pugio	0.57	11.45	2			

*Author email: scott.alford@ufl.edu; Presenter email: mpolito@lsu.edu

Fig 1. Study sites spanning the salinity gradient departing from the West Pointe à la Hache siphon (red star).

Fig 2. PCA of environmental conditions within each site (WPH 1, WPH 2, PS 7) for each year (2018, 2019, 2021, 2022).

Table 2. SIMPER comparison of abundance (Abund) and percent
 contributions to community similarity (% Cont.) by species making up majority of on-marsh community (minnow traps) in each site (WPH 1, WPH 2, PS 7) within each year sampled (2018, 2019, 2021, 2022).

Results

- Faunal communities varied among sites presiphon opening.
 - All faunal communities were composed of primarily estuarine species pre-siphon opening (Table 1 & 2).
 - Brown shrimp *F. aztecus* and Gulf killifish *F. grandis* were dominant taxa collected pre-siphon opening. (Table 1 & 2).
- Communities at **WPH 1 experienced largest** change post-siphon opening (Fig. 3), while sites farther from siphon (WPH 2, PS 7) incurred less drastic change.
- Freshwater species (blue catfish [*I*. *furcatus*] and Ohio River shrimp [*M*. *ohione*]) became major contributors to the community at WPH 1 (Table 1 & 2).
- Communities at WPH 2 and PS 7 remained composed of same primary estuarine species but in different abundances (Table 1 & 2).

Conclusions

- Objective 1: Nekton communities displayed inter-annual variability at all sites but with large shifts in community structure postsiphon opening.
- **Objective 2**: Effects were most prominent closest to the siphon (WPH 1) while communities more distal (WPH2, PS7) retained species composition, indicating an impact gradient.
- **Objective 3**: Freshwater species replaced estuarine species at our most impacted site (WPH 1), displaying reorganization that could impact ecological functions (e.g., energy flow) and services (e.g., fisheries).

Acknowledgments

This research was funded by the South-Central Climate Adaptation Science Center and NOAA Restore Science Program. Thank you also to the many collaborators and students who assisted with field work.

